MATH 4030 Differential Geometry Problem Set 4

due 3/11/2017 (Fri) at 5PM

Problems

(to be handed in)

Unless otherwise stated, we use U, O to denote connected open subsets of \mathbb{R}^n . The symbols S, S_1, S_2, S_3 always denote surfaces in \mathbb{R}^3 . Recall that a *critical point* of a smooth function $f : S \to \mathbb{R}$ is a point $p \in S$ such that $df_p = 0$.

- 1. (a) Let p be a point on a surface $S \subset \mathbb{R}^3$. Prove that K(p) > 0 if and only if there exists a point $p_0 \in \mathbb{R}^3$ such that p is a local maximum of the function $f(x) = |x p_0|^2$.
 - (b) Show that there is no compact surface $S \subset \mathbb{R}^3$ with $K \leq 0$ everywhere.
- 2. Compute the mean curvature H and Gauss curvature K of the *catenoid* and the *helicoid* given respectively by the parametrizations

$$X(u,v) = (\cosh v \cos u, \cosh v \sin u, v), \qquad (u,v) \in (0,2\pi) \times \mathbb{R},$$
$$X(u,v) = (v \cos u, v \sin u, u), \qquad (u,v) \in \mathbb{R}^2.$$

3. Show that a graphical surface $S = \{z = f(x, y)\}$ is minimal (i.e. $H \equiv 0$) if and only if f satisfies the minimal surface equation:

$$(1+f_x^2)f_{yy} - 2f_xf_yf_{xy} + (1+f_y^2)f_{xx} = 0.$$

4. Compute the mean curvature H and Gauss curvature K of the torus of revolution given by the parametrization

$$X(u,v) = ((a + b\cos u)\cos v, (a + b\cos u)\sin v, b\sin u), \qquad (u,v) \in (0,2\pi) \times (0,2\pi),$$

where a > b > 0 are constants.

- 5. Let $S_1 = \{z = 0\}$ be the *xy*-plane and $S_2 = \{x^2 + y^2 = 1\}$ be the right unit cylinder. Show that the map $f: S_1 \to S_2$ defined by $f(x, y, 0) = (\cos x, \sin x, y)$ is a local isometry.
- 6. Find a local isometry $f: S_1 \to S_2$ from the upper half plane $S_1 = \{z = 0, y > 0\}$ to the cone $S_2 := \{x^2 + y^2 = z^2, z > 0\}$. Calculate the mean and Gauss curvatures of S_2 .
- 7. Find a local isometry between the helicoid and the catenoid. Are they globally isometric?

Suggested Exercises

(no need to hand in)

- 1. Let $S \subset \mathbb{R}^3$ be a surface. Fix $p_0 \in \mathbb{R}^3$ and consider the smooth function $f: S \to \mathbb{R}$ defined by $f(p) = |p p_0|^2$.
 - (a) Show that $p \in S$ is a critical point of f if and only if p_0 lies on the normal line of S at p, i.e.

$$p_0 = p + \lambda N(p)$$

for some $\lambda \in \mathbb{R}$, here N(p) is any unit normal to S at p.

(b) Calculate the hessian of f at a critical point $p \in S$ and show that

$$d^2 f_p(v) = 2\big(|v|^2 - \lambda A(v,v)\big),$$

where λ is the constant as in (a) and A is the second fundamental form of S at p (relative to the normal N as in (a)).

- 2. Describe the region of S^2 covered by the image of the Gauss map of the following surfaces:
 - (a) Paraboloid of revolution $z = x^2 + y^2$.
 - (b) Hyperboloid of revolution $x^2 + y^2 z^2 = 1$.
 - (c) Catenoid $x^2 + y^2 = \cosh^2 z$.
- 3. Determine all the umbilic points on the ellipsoid (where a > b > c > 0 are distinct positive real numbers):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

At which point(s) does the Gauss curvature K attains its maximum? What about for the mean curvature H (assuming the orientation is chosen such that H > 0)?

- 4. Let $f: S_1 \to S_2$ be an isometry between two compact surfaces S_1, S_2 in \mathbb{R}^3 . Show that S_1 and S_2 have the same area. (You can assume that S_2 is covered by a single parametrization except a set of measure zero.)
- 5. Suppose $X: U \to V \subset S$ and $\tilde{X}: U \to \tilde{V} \subset \tilde{S}$ are parametrizations of two surfaces S, \tilde{S} in \mathbb{R}^3 such that their first fundamental forms are the same, i.e. for i, j = 1, 2,

$$g_{ij} = \langle \frac{\partial X}{\partial u_i}, \frac{\partial X}{\partial u_j} \rangle = \langle \frac{\partial X}{\partial u_i}, \frac{\partial X}{\partial u_j} \rangle = \tilde{g}_{ij} \quad \text{on } U.$$

Show that V is isometric to \tilde{V} .

6. Given a surface $S \subset \mathbb{R}^3$, prove that the set of isometries $f : S \to S$ form a group under composition. This is called the *isometry group of S*. What is the isometry group of the unit sphere $\mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$?